
Fundamental concepts in statistics
Statistical model and the likelihood function

Subhash R. Lele

Department of Mathematical Sciences

University of Alberta

Canada

Email: slele@ualberta.ca

July 13, 2016



Occupancy surveys

1. Divide the study area in equal area cells. Let there be N cells.

2. Take a simple random sample of size n from these cells.

3. Visit these selected cells and find out if it is occupied by the species
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Assumptions

1. Cells are identical to each other.

2. Occupancy status of one cell does not depend on the occupancy

status of the other cells.

3. Because we cannot visit all selected cells simultaneously, we assume

the occupancy status of the cells does not change during the survey

period.
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Statistical model and notation

We can express the above process in statistical terms as:

Yi ∼ Bernoulli(p), i = 1, 2, ..., n. (1)

are independent, identically distributed random variables.

Sampled cells: Y1,Y2, ...,Yn

Unsampled cells: Y(n+1),Y(n+2), ...,YN

We will not differentiate between data and random variables for the sake

of simplicity. The difference should be obvious from the context.

Data:y1, y2, ..., yn.

These are the realized values (0, 0, 1, 1, 0, ..)



Statistical model: This quantifies the probability of different outcomes.

In our case, the possible outcomes are {0,1}. Hence we use the Bernoulli

distribution to model these outcomes. The probability mass function of

the Bernoulli random variable is given by P(Y = y) = py (1− p)(1−y)

where p.

The probability of success, p, is called the parameter of the model. This

is generally unknown. However, if we know the value of this parameter,

we know the behaviour of the statistical model completely.

One of the goals of the statistical inference is to infer the value of the

parameter using the observed data. The method of maximum

likelihood tells us how this can be done in a very general fashion.



Likelihood function

This is proportional to the probability of observing the data at hand:

L(p; y1, y2, . . . , yn) =
n∏

i=1

pyi (1− p)1−yi (2)

We take the product because observations are assumed to be

independent of each other. If the observations are dependent, such as in

time series, we need to account for dependence appropriately. This will

be covered later when we deal with population time series data.



Important properties of the likelihood

1. Likelihood is a function of the parameter.

2. Data are fixed.

3. Likelihood is not a probability of the parameter taking a specific

value. It represents the probability of observing the data at hand for

that particular value of the parameter. Thus, if the parameter is

fixed at p̃, then the probability of observing the data at hand is:

L(p̃; y1, y2, . . . , yn) =
n∏

i=1

p̃yi (1− p̃)1−yi . (3)



Important properties of the likelihood (continued)

1. Different data sets lead to different likelihood functions.

2. As the sample size increases, the likelihood function becomes

concentrated around the true value of the parameter. This is an

essential property of any estimation procedure. As we get more data,

we should have stronger and stronger evidence for the true value.

3. Likelihood is an intrinsically relative concept. It answers the question

what is the strength of evidence for one parameter values as

compared to an alternative parameter value. Thus, likelihood ratio is

a more fundamental concept than the likelihood itself. (Hacking,

1965; Royall 1997).
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Goals of statistical inference

1. Given these data, what is the strength of evidence for one hypothesis

vis a vis an alternative hypothesis? (Evidential paradigm)

2. Given these data, what decision do I make?

(Neyman-Pearson-Wald paradigm)

3. Given these data, how do I change my beliefs? (Bayesian

paradigm)

Fisherian p-value approach falls somewhere between the evidential

paradigm and the Neyman-Pearson-Wald paradigm. It lacks the

consideration of the alternative hypothesis and hence is inadequate for

quantifying evidence (Royall, 1997).
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The Maximum Likelihood Estimator (MLE)

1. This is that value of the parameter that is supported the best by the

data at hand.

2. For a specific data set, this is simply a number; a point estimate.

3. For different data sets, we get different point estimates. A function

that allows us to compute these different values is called an

estimator.

4. Thus, p is a parameter, p̂ = Ȳ is an estimator and p̂ = 0.34 is an

estimate.
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What is statistical about statistical inference?
Cox (1958, Annals of Mathematical Statistics)

I From particular to general: Inductive inference means making

statements about population quantities based on the observed

sample

I Quantifying uncertainty about such statements is what makes such

statements statistical inferential statements.

I How do we quantify uncertainty? Traditionally we use probability as

a measure of uncertainty.
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Different definitions of probability

1. Frequency definition Long range proportion in a repeatable

experiment

2. Betting definition How much would one bet on one event as

compared to other event?

There are other systems of probability (Stanford encyclopedia of

philosophy of science). We will use only these two for our discussion.
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Frequentist quantification of uncertainty

If we repeat the experiment (whatever that might be), how often would

my inferential statement be contradicted? Is my statement replicable?

1. Confidence intervals What is the range of values would the

statement take?

2. Hypothesis testing and errors How often would I make a mistake

(Type I) or how often would I be correct (Power)?

3. Misleading, Weak and Strong evidence How often would I be

misled? How often would I say ’I do not know’?
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1. Sampling distribution of an estimator: Suppose we repeat the

experiment, we will get different point estimate for each repetition.

The histogram of these point estimates is called the sampling

distribution of the estimator. We may report the mean and quantiles

of such a distribution. It characterizes the frequentist uncertainty of

the estimator.

2. Estimated sampling distribution of the estimator: In practice, of

course, we do not have replicated experiments. We can, instead, use

the point estimate from the current data as if it is the true

parameter value and replicate the experiment under that

assumption. This leads to Monte Carlo estimate of the sampling

distribution. This is also called the ’parametric bootstrap’.

3. Non-parametric bootstrap approach: Instead of assuming the

parametric model, if we simply resample with replacement from the

data to generate new samples, we obtain a model-robust estimate of

the sampling distribution.



Bias, Consistency and validity of the estimated confidence

intervals

1. If the estimator on an average equals the true parameter value, it is

called an unbiased estimator.

2. If the estimator converges to the true value as the sample size

increases, it is called a ’consistent’ estimator. This is an essential

property of ANY statistical procedure.

3. An estimator that converges to the true value fastest, is called an

’efficient’ estimator. This can be, most of the times, characterized

by the variance of the sampling distribution. Smaller the variance,

better is the estimator.

4. How often the true parameter value lies inside the estimated

confidence interval determines the validity of the confidence interval.

It should cover the true value close to the stated coverage

proportion.
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Bayesian paradigm

I Inference should be based on the data at hand and should not

depend on what other data I might have observed (roughly, the

likelihood principle)

I Where does the uncertainty come from?

I Uncertainty is in our beliefs about the values of the parameters.

I When we have no data, this uncertainty is quantified by the prior

distribution π(θ).

I When we observe some data, this uncertainty is quantified by the

posterior distribution

π(θ|yn) =
f (yn|θ)π(θ)∫
f(yn|θ)π(θ)dθ

(4)
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1. We need to quantify our beliefs in terms of a probability distribution.

2. We need to be able to compute the posterior distribution.

3. This is the uncertainty of our beliefs about different values of the

parameters after we observe the data.

4. The posterior distribution, obviously, depends not just on the data

at hand (unlike the likelihood function) but also depends on the

prior distribution. Different prior distributions lead to different

posterior distributions.

5. All we need to know is the posterior distribution. Any of the

inferential statements can be obtained from the posterior

distribution. (Examples later).
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Properties of the posterior distribution

1. Same data, different priors lead to different posteriors.

2. Same prior, different data lead to different posteriors.

3. As the sample size increases, the posterior distribution is invariant to

the prior and it eventually degenerates at the true value (phew!).
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Bayesian analysis of occupancy problem

I Prior distribution: The parameter p takes values in the range (0,1)

and hence the prior distribution should also have the same range.

Hence we MAY consider

π(p) ∼ Beta(a, b) (5)

We can choose different values for a and b. They will reflect

different beliefs about the occupancy probability.

I The model for the observed data is as before:

Yi |p ∼ Bernoulli(p)fori = 1, 2, ..., n (6)

I The posterior distribution can be analytically computed as:

π(p|y(n)) ∼ Beta(a +
∑

yi , b + (n −
∑

yi )) (7)



I Shapes of different priors

I Shapes of different posteriors for the same data (prior affects the

posterior)

I Shapes of the posterior as we increase the sample size (information

in the data)
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I Nuisance parameters: If we are interested in only one of the

parameters, we simply find the marginal posterior distribution for it

by integrating over the rest of the parameters.

π(θ2|yn) =

∫
π(θ2, θ1|yn)dθ1 (8)

I Prediction of a new observation: We can simply write

π(yn+1|yn) =

∫
f (yn+1|θ)π(θ|yn)dθ (9)

All these operations follow from the standard probability calculus.



I Nuisance parameters: If we are interested in only one of the

parameters, we simply find the marginal posterior distribution for it

by integrating over the rest of the parameters.

π(θ2|yn) =

∫
π(θ2, θ1|yn)dθ1 (8)

I Prediction of a new observation: We can simply write

π(yn+1|yn) =

∫
f (yn+1|θ)π(θ|yn)dθ (9)

All these operations follow from the standard probability calculus.



Non-informative priors

1. Dependence of the scientific inference on the beliefs of the

experimenter is bothersome to many scientists. It can bias the

conclusions. Whose belief should we accept: An environmental

activist or an oil industry expert or a ’scientist’? How do we justify

these beliefs in the court of law where many ecological studies end

up.

2. Can we construct priors so that the posterior is mostly affected by

the data (the likelihood)?

3. Such priors are called non-informative priors and the analysis is

euphemistically called an ’objective Bayesian’ analysis.

4. Unfortunately, it is impossible to construct such non-informative

priors (even according to the staunchest Bayesians).
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Let us look at shapes of some of the ’non-informative’ priors commonly

used in occupancy models.

I Uniform prior or Beta(1, 1) prior.

I Jeffrey’s prior or Beta(0.5, 0.5) prior

I Normal prior with large variance on the logit scale: In most

applications, we use logistic regression model to model the

probability of occupancy and such priors are specified on the

regression coefficients.

I What are the induced priors on the probability scale?

I What is ’non-informative’ on the logit scale is highly informative on

the probability scale. This non-invariance to reparameterization is a

major problem with the concept of ’non-informative’ or ’objective’

priors. It has strong implications in scientific inference and decision

making.
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Hierarchical models

For hierarchical models, we have observables yn, latent variablesXn and

parameters θ.

I Observation model: yn ∼ f (yn|Xn, θ)

I Latent variable model: Xn ∼ g(Xn|θ)

I Prior distribution: π(θ)



I We need to define a prior distribution is on ALL unknowns. Bayesian

inference does not differentiate between parameters and random

variables.

I Information about parameters converges to infinity as the sample

size increases.

I Information about random variables does not converge to infinity.

There is always uncertainty about the next observation.

I Random effects are NOT parameters. They are variables.



Bayesian inference for hierarchical models is quite easy. All we need is the

posterior distribution of the unknowns given the knowns. That is:

π(θ,Xn|yn) =
f (yn|θ,Xn)g(Xn|θ)π(θ)

m(yn)
(10)

The MCMC algorithms allow us to generate random numbers from the

posterior distribution. These can be used to obtain credible intervals and

other inferential quantities.

Complete class theorem says that the best decision is necessarily a

Bayesian decision.

PROBLEM SOLVED?
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I Let us see how to use computer software JAGS and ’dclone’ to

conduct Bayesian inference using MCMC for the occupancy model

we have discussed.

I Please make sure that the algorithm has converged. You can use the

time series plots and R-hat diagnostics; however these are NOT

fool-proof tests. There are no such test available.
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I The likelihood inference for hierarchical models is computationally

very challenging because the evaluating the likelihood function

involves evaluation of the high-dimensional integral:

I On the other hand, Bayesian inference is relatively computationally

easy. Hence the popularity of the Bayesian inference in ecology.

I However, the thorny problem of specifying the prior (informative or

non-informative) distribution and its effect on the final scientific

inference remains.

I Can we trick Bayesian approach into giving frequentist answers?

Thus, exploiting the computational simplicity of the Bayesian

approach and still retaining the objectivity of the frequentist

approach?

I DATA CLONING!
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A brief introduction to data cloning

The basic idea behind data cloning is really very simple. Recall that as

we increase the sample size, the posterior distribution becomes

degenerate at the MLE. Furthermore, it is also known that the posterior

distribution converges to N(θ̂,I−1(θ̂)).

1. Pretend as if we have conducted K independent experiments and

each experiment ended up with exactly the same data.

2. Thus, we have K copies of the same data (hence the name ’data

cloning’). Now apply the MCMC algorithm on this cloned data.

3. If the number of clones is large, mean of the posterior distribution is

the MLE and the variance multiplied by K is the asymptotic

variance of the MLE.

4. This is invariant to the choice of the prior distribution. Prior

distribution is simply a collection of guesses at the MLE.
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Estimability of the parameters

A very important outcome of the data cloning algorithm is a test for

estimability of the parameters in the model. Just because you can write

the likelihood function and maximize it; it does not imply that the

parameters are estimable given the data. We may end up on a ridge in

the likelihood. This is difficult to prove mathematically, especially for

hierarchical models.

If the variance of the posterior distribution, instead of converging to 0

converges to a positive number, it implies that some of the parameters in

the model are non-estimable. This should raise a very big red flag when

interpreting the results of the analysis.
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Conducting data cloning based likelihood analysis is quite simple. A very

minor modification of the JAGS program and the data file allows us to

obtain the MLE and its variance. Let us see how we can do it for the

occupancy model.



SUMMARY

1. Statistical inference is an inductive process. Given the data, we want

to infer about the mechanism that could have generated the data.

2. Estimation corresponds to finding the best supported mechanism out

of the proposed alternative mechanisms.

3. An inferential statement is statistical only when we attach a measure

of uncertainty to it.

4. There are two ways to attach such uncertainty measures:

Frequentist and Bayesian.
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1. Frequentist approach requires the researcher to specify how the

experiment might be replicated (at least potentially). It tells you

how reliable are our statements.

2. Bayesian approach requires the researcher to specify prior beliefs and

then it tells you what your modified beliefs should be.

3. Both inferences can be applied for hierarchical models. Models are

neither Bayesian nor Frequentist; only Bayesian or Frequentist

inferences.
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