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Which experiment do we repeat?

(Conditionality principle)

Consider a simple experiment to determine the weight of an item such

that it consists of two stages:

1. Toss a fair coin and note the outcome whether ’head’ or ’tail’.

2. If the outcome is ’head’, then use a very accurate scale, i.e.

Y ∼ N(µ, 0.01)

3. If the outcome is ’tail’, then use a very inaccurate scale, i.e.

Y ∼ N(µ, 10)

The estimate of µ is the observed data y . What is the uncertainty

associated with this number?
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Unconditional and Conditional confidence

intervals

We actually have two pieces of information: The observation y and

outcome of the coin: head or tail. In my simulation, I got w = 1 and

y = 3.9712

Conditional confidence interval

I Suppose we know that the outcome of the coin toss was ’head’.

Then we know that the scale that we used was very accurate and

hence (y − 1.96 ∗ 0.1, y + 1.96 ∗ 0.1) = (3.78, 4.17) is the sensible

statement to make.

I Suppose we know that the outcome of the coin toss was ’tail’. Then

we know that the scale that we used was very inaccurate and hence

y − 1.96 ∗ 3.16, y + 1.96 ∗ 3.16 is the sensible statement to make.

If we are lucky, we should accept our luck and give a short interval; if we

are unlucky, we should give a long interval.
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Unconditional confidence interval If we follow the strict definition of

confidence interval, we should actually compute these confidence

intervals under the repetition of the full experiment: First the coin toss

and then the measurement. If we do that, the confidence interval we get

is approximately: (−1.36, 9.25).

I Does this interval make sense to you?

I To me, the conditional intervals make sense but if we follow the

frequentist approach as per the definition, the unconditional

confidence interval is the correct one (in fact, it is optimal!)
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I This phenomenon is not limited to artificial examples.

I In linear regression, the variance of the estimator of the regression

coefficient depends on the configuration of the covariates. If the

covariates are spread out, we get a good estimate of the slope;

otherwise we get bad estimates.

I The standard calculations reflect this but are they ’kosher’ according

to the strict definition of the confidence interval?

I They are ’kosher’ only if we condition on the covariate values. That

is, we only repeat the experiment under the same covariate values.

I If the covariate values themselves are random (for example, in

observational studies), we should be computing the unconditional

confidence intervals, integrating over the variation in the covariate

values too.

I Scientifically the unconditional confidence interval does not make

sense and hence we do not use it.
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I The value of the coin toss gives us no information about the

parameter of interest but tells us about the uncertainty.

I The values of the covariates give us no information about the slope

but tell us about the uncertainty associated with the parameter

estimate.

I Such quantities are called ’ancillary statistics’.

I Conditionality principle says that we should use inference conditional

on such ancillary statistics or ’relevant subsets’ of the sample space

defined by them.

I These are non-unique. That is a BIG problem with the frequentist

approach.

The researcher has to decide which experiment is supposed to be

repeated.
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Other related problems
I Multiple comparisons

I Two anthropological surveys (same individuals in the survey): One

collects information only about the character of interest (say, Height)

and the other collects information on all the different characters (say,

Height, Weight, Age ... )

I Should the confidence interval for Height be different for two

surveys?

I Nuisance parameters
I How do we conduct inference about one of the parameters in the

presence of other parameters?



I The main problem with frequentist measure of uncertainty is that it

is a pre-data measure whereas we would like to have a post-data

measure of uncertainty.

I This is similar to saying that the GPS unit that I use to locate an

animal is highly accurate. It tells us nothing about the accuracy of

the individual measurement that we have. In principle, it could be

quite far apart (indeed with small probability).

I Is it possible to give post-data uncertainty of the
inferential statement?
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Issues with the Bayesian approach

I Specification of the prior distribution is the tricky part, especially

when we multi-parameter situation with possible correlations

between parameters.

I Eliciting priors from the experts is extremely difficult.

I We do not even know which parameters are estimable and which

ones are not estimable.

I Prior distribution on non-identifiable parameters is impossible to

elicit.

I Complete class theorem says that there exists a prior that will lead

to the best decision. But it neither tells us how to construct such a

prior nor does it indicate how far our chosen prior is from such an

ideal prior distribution. This is not very useful in practice.
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Do we need frequentist probability to evaluate
Bayesians?

I What does credible interval mean? How do we validate its

correctness? The credible interval is to be interpreted as: ”I believe

the parameter belongs to ...”. I have seldom seen a Bayesian paper

saying ’I believe ...’ when interpreting the credible intervals or

Bayesian hypothesis testing.

I What does prediction interval mean? How do we validate its

correctness? Are we thinking of replicating the experiment and

checking how many times the interval contains the actual outcome?

I When we say we are willing to bet in a certain way, do we implicitly

mean that we believe that we will win a certain proportion of times?

Is this a back door entry to a frequentist thinking?
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Stanford Encyclopedia of Philosophy

Ascertainability This criterion requires that there be some

method by which, in principle at least, we can ascertain values

of probabilities. It merely expresses the fact that a concept of

probability will be useless if it is impossible in principle to find

out what the probabilities are...

Is the Bayesian probability ascertainable without some aid from

frequentist notion?



I Model diagnostics is inherently a frequentist concept. In the

Bayesian literature, distance of the data from the predictive

distribution is used to study model adequacy. This can tell us

something is wrong with the model but what it cannot tell us is

whether it is the prior or the likelihood that is wrong.

I Well calibrated Bayesian? Some Bayesian philosophers want to

have a procedure that is Bayesian in principle but also valid in the

frequentist sense. They try to choose a prior that satisfies this

condition. The question of which experiment should I repeat rears is

ugly head again.
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Non informative or objective Bayesian
approach

Can we choose a prior that will ’let the data speak’?

I There is no proper definition of a non-informative prior. Flat priors

or priors with large variance are not non-informative.

I In practice, only independent component priors are chosen although

clearly the parameters are bound to be related. This is just for the

sake of convenience and does not reflect actual expert opinion.

I In the past, priors were chosen for mathematical convenience. Now

they are chosen for computational convenience and convergence of

the MCMC. They seldom reflect expert opinion.

I The results from the non-informative priors are NOT similar to the

frequentist results. This is a complete myth and a number of

examples (and, theoretical explanations) exist showing the falsity of

this statement.
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I There are frequentist or likelihood based methods, e.g.

meta-analysis, that can be used to combine past data or related data

or expert opinion with the data at hand. One does not have to

follow the Bayesian approach to achieve this goal. This is another

myth spread by the Bayesian practitioners.

I The non-informative or objective Bayesian analysis is nothing but

BINO (Bayesian In Name Only).
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I Does it even make sense to talk about uncertainty about

events/experiments that are not replicable?

I When we say equivalent experiments, do we mean similar but not

necessarily identical? Is it ever possible to repeat an experiment

identically? Can we even toss a coin exactly the same way? What

do we mean by repeating an experiment?

I Example for combining past data with future data using the

likelihoods vs prior-posterior paradigm (which one is better?)

I Example of combining ’related’ data but not the exact same

experiment using hierarchical modelling and likelihood (similar to

expert opinion)

I Example of checking if the prior is ’good’ by generating data from

the predictive distribution and using that to see if it would have

added any information.

I Why should Bayesians be worried about sensitivity to the priors? Are

they bolstering weak data with priors?



SUMMARY

I If you want to be a frequentist, you have to decide on which

experiment you are (hypothetically) repeating.

I If you are a proper Bayesian, you have to choose a prior. You are

answering the question: What is my belief having observed these

data? Is this what we want in science?

I An objective Bayesian is neither a Bayesian nor a frequentist. It

suffers from the shortcomings of both approaches. Priors do not

reflect expert opinion; posteriors have no frequentist meaning.

I Sophie’s choice: Bayesian myths or frequentist follies?

(An impossibly difficult choice, especially when forced onto someone. The choice is between two unbearable options, and it is

essentially a no-win situation)


